Supplementary Materials

Real-Time Birth-to-Annihilation Dynamics of Dissipative Kerr Cavity Soliton

Haijiao Xu (徐海娇)^{1†}, Wei Lin (林 巍)^{1†}, Xu Hu (胡 旭)^{1†}, Yang Yang (杨 洋)¹, Zongda Li (李宗达)², Yiqing Xu (许艺青)², Yuankai Guo (郭元锴)¹, Dongdan Chen (陈东丹)³, Xiaoming Wei (韦小明)^{1,3*}, and Zhongmin Yang (杨中民)^{1,3,4**}

¹School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China

²Department of Physics, University of Auckland, Auckland 1010, New Zealand.

³School of Materials Science and Engineering; Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices; Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510641, China

⁴Research Institute of Future Technology, South China Normal University, Guangzhou 510006, China

[†]These authors equally contributed to this work.

*Corresponding author: <u>xmwei@scut.edu.cn;</u>

**Corresponding author: yangzm@scut.edu.cn

S1. Theoretical model

To theoretically understand the nonlinear dynamics of the Kerr fiber cavity, a mean-field Lugiato-Lefever equation (LLE) is employed to describe the behavior of the light propagation, i.e.,

$$\frac{\partial E}{\partial z} = -i\frac{\delta_0}{L}E - \frac{\alpha}{2L}E - i\frac{\beta_2}{2}\frac{\partial^2 E}{\partial t^2} + i\gamma \mid E \mid^2 E + \frac{\theta}{L}E_{in}.$$
(S1)

where *E* is the slowly-varying envelope of the intracavity light field and E_{in} is the field amplitude of the driving field. δ_0 represents the linear phase cavity detuning that is defined as the difference between the linear cavity roundtrip phase shift and the phase of the closest cavity resonance.^[1] β_2 and γ are the group-velocity dispersion (anomalous in this case) and nonlinear coefficient of the single-mode fiber (SMF), respectively. *L* is the length of the Kerr fiber cavity. α is the total cavity loss, while θ accounts for the amplitude transmittance of the driving pump. In the experiment, the key parameters include $\beta_2 \approx -20 \text{ ps}^2/\text{ km}$, $\gamma \approx 1.5$ W⁻¹ km⁻¹, $L \approx 53$ m, $\alpha \approx 0.16$, $\theta \approx \sqrt{0.05}$.

To explore the regimes of the parameter space in the LLE, we study the cavity response using a function $P = f(P_{in})$ that is written as

$$\frac{P}{P_{in}} = \frac{\theta^2}{(\delta_0 - \gamma PL)^2 + \alpha^2/4},$$
(S2)

where *P* and *P*_{in} are the optical powers of the intracavity and driving fields. Eq. (S2) shows a S-shaped curve and results in multiple stability regimes when $\delta_0 > \sqrt{3\alpha/2}$, and the upper (*P*₊) and lower (*P*₋) branches of homogeneous solutions, i.e.,

$$P_{\pm} = \frac{4\delta_0 \pm \sqrt{4\delta_0^2 - 3\alpha^2}}{6\gamma L},$$
 (S3)

Eq. (S3) defines the bistable regime that latently supports the cavity soliton (CS).^[1] In order to further analyze the spontaneous generation of the CS, the Turing-type modulation instability (MI) of the mean-field LLE^[2] can be characterized using the gain spectrum $G(\omega)$ as well as its most unstable frequency ω_{MI} , i.e.,

$$G(\omega) = -\frac{\alpha}{2L} + \sqrt{(\gamma P_{in})^2 - \left(\frac{\beta_2 \omega^2}{2} + 2\gamma P_{in} - \frac{\delta_0}{L}\right)^2}, \qquad (S4a)$$

$$\omega_{MI} = \sqrt{\frac{2}{\beta_2} \left(\frac{\delta_0}{L} - 2\gamma P_{in}\right)}, \ G(\omega_{MI}) = -\frac{\alpha}{2L} + \gamma P_{in}.$$
 (S4b)

Considering the inequalities of $G(\omega_{MI}) \ge 0$ and $\omega_{MI} \ge 0$ that give rise to the MI, two critical power levels that designate the MI regime in the parameter space (δ_0 , P_{in}) i.e.,

$$P_{th} = \frac{\alpha}{2\gamma L}, \quad P_{\omega} = \frac{\delta_0}{2\gamma L}.$$
 (S5)

S2. Numerical simulation

The dynamics of the CS are numerically investigated by solving Eq. (S1) using the split-step method with a fourth-order Runge-Kutta algorithm. To facilitate the parameter settings that render versatile dynamics, the coefficients used in Eq. (S1) can be rewritten in dimensionless forms by means of the transformations, i.e.,

$$Z \to \frac{\alpha z}{2L}, \ T \to t \sqrt{\frac{\alpha}{\beta_2 L}}, \ E' \to E \sqrt{\frac{2\gamma L}{\alpha}},$$
 (S6a)

$$\Delta \to \frac{2\delta_0}{\alpha}, \ S \to E_{in} \sqrt{\frac{8\gamma L\theta^2}{\alpha^3}}.$$
 (S6b)

Thus, Eq. (S1) is revised as

$$\frac{\partial E'}{\partial Z} = -i\Delta E' - E' - i\frac{\partial^2 E'}{\partial T^2} + i \mid E \mid^2 E + S.$$
(S7)

For a driving pump of $P_{in} \approx 6$ W that is consistent with the experiment, it gives rise to $S \approx$ 7.1. A scan of cavity detuning δ_0 follows the Δ variation from 6 to 15.

S3. Data processing

The experimental data recorded by the real-time oscilloscope are firstly segmented according to the roundtrip time of the Kerr fiber cavity, and formatted as a two-dimensional matrix $M \times N$, in which each column (*M*) designates spectral information and each row (*N*) represents the roundtrip number. For the time-stretched signal, a coordinate transform is applied in terms of

 $\lambda = t/D_2$, where t and λ represent the retarded time and wavelength, respectively. D_2 is the amount of dispersion provided by the five dispersion compensating modules, i.e., -10.2 ns/nm in this case. To improve the signal-to-noise ratio, a lowpass filtering is applied.

Reference

- S. Coen, M. Haelterman, Ph. Emplit, L. Delage, L. M. Simohamed, and F. Reynaud, "Experimental investigation of the dynamics of a stabilized nonlinear fiber ring resonator", J. Opt. Soc. Am. B 15, 2283 (1998).
- M. Anderson, Y. Wang, F. Leo, S. Coen, M. Erkintalo, and S. G. Murdoch, "Coexistence of multiple nonlinear states in a tristable passive Kerr resonator", Phys. Rev. X 7, 031031 (2017).