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S1. Theoretical model 

To theoretically understand the nonlinear dynamics of the Kerr fiber cavity, a mean-field 

Lugiato-Lefever equation (LLE) is employed to describe the behavior of the light propagation, 

i.e., 
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where 𝐸 is the slowly-varying envelope of the intracavity light field and 𝐸𝑖𝑛  is the field 

amplitude of the driving field. 𝛿0 represents the linear phase cavity detuning that is defined 

as the difference between the linear cavity roundtrip phase shift and the phase of the closest 

cavity resonance.[1] 𝛽2 and 𝛾 are the group-velocity dispersion (anomalous in this case) and 

nonlinear coefficient of the single-mode fiber (SMF), respectively. 𝐿 is the length of the Kerr 

fiber cavity. 𝛼 is the total cavity loss, while 𝜃 accounts for the amplitude transmittance of 

the driving pump. In the experiment, the key parameters include 𝛽2 ≈ -20 ps2/ km, 𝛾 ≈ 1.5 

W-1 km-1, 𝐿 ≈ 53 m, 𝛼 ≈ 0.16, 𝜃 ≈ √0.05.  

To explore the regimes of the parameter space in the LLE, we study the cavity response using 

a function 𝑃 = 𝑓(𝑃𝑖𝑛) that is written as 
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where 𝑃 and 𝑃𝑖𝑛 are the optical powers of the intracavity and driving fields. Eq. (S2) shows 

a S-shaped curve and results in multiple stability regimes when 𝛿0 > √3𝛼 2⁄ , and the upper 

(𝑃+) and lower (𝑃−) branches of homogeneous solutions, i.e.,  
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Eq. (S3) defines the bistable regime that latently supports the cavity soliton (CS).[1] In order to 

further analyze the spontaneous generation of the CS, the Turing-type modulation instability 

(MI) of the mean-field LLE[2] can be characterized using the gain spectrum 𝐺(𝜔) as well as 

its most unstable frequency 𝜔𝑀𝐼, i.e., 
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Considering the inequalities of 𝐺(𝜔𝑀𝐼) ≥ 0  and 𝜔𝑀𝐼 ≥ 0  that give rise to the MI, two 

critical power levels that designate the MI regime in the parameter space (𝛿0, 𝑃𝑖𝑛) i.e., 
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S2. Numerical simulation  

The dynamics of the CS are numerically investigated by solving Eq. (S1) using the split-step 

method with a fourth-order Runge-Kutta algorithm. To facilitate the parameter settings that 

render versatile dynamics, the coefficients used in Eq. (S1) can be rewritten in dimensionless 

forms by means of the transformations, i.e., 
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Thus, Eq. (S1) is revised as 

𝜕𝐸′

𝜕𝑍
= −𝑖Δ𝐸′ − 𝐸′ − 𝑖

𝜕2𝐸′

𝜕𝑇2
+ 𝑖 ∣ 𝐸 ∣2 𝐸 + S. (𝑆7) 

For a driving pump of 𝑃𝑖𝑛 ≈ 6 W that is consistent with the experiment, it gives rise to 𝑆 ≈ 

7.1. A scan of cavity detuning 𝛿0 follows the Δ variation from 6 to 15.  

S3. Data processing 

The experimental data recorded by the real-time oscilloscope are firstly segmented according 

to the roundtrip time of the Kerr fiber cavity, and formatted as a two-dimensional matrix M×N, 

in which each column (M) designates spectral information and each row (N) represents the 

roundtrip number. For the time-stretched signal, a coordinate transform is applied in terms of 



𝜆 = 𝑡 𝐷2⁄ , where t and λ represent the retarded time and wavelength, respectively. 𝐷2 is the 

amount of dispersion provided by the five dispersion compensating modules, i.e., -10.2 ns/nm 

in this case. To improve the signal-to-noise ratio, a lowpass filtering is applied. 
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